
Accelerating Data Movement Leveraging End-system and Network

Parallelism

Jun Yi+, Raj Kettimuthu+∗, Venkatram Vishwanath+∗

Mathematics and Computer Science Division, Argonne National Laboratory+

Computation Institue, University of Chicago∗

{jyi, kettimut, venkatv}@mcs.anl.gov

Abstract

Data volumes produced by simulation, experimental
and observational science is rapidly increasing. This
data needs to be moved from its source to another
resource for analysis, visualization and archival pur-
poses. The destination resource could be either local
or remote. The data intensive science is critically de-
pendent upon the high-performance parallel file and
storage end systems to read/write and high-speed
networks to move their enormous data between local
and remote computing and storage facilities. 100 Gi-
gabit per second networks such as DOE’s Advanced
Network Initiative (ANI), Internet2’s 100G network
represent a major step forward in wide area net-
work performance. Effective utilization of these net-
works requires substantial and pervasive parallelism,
at the file system, end system, and network levels.
Additional obstacles such as heterogeneity and time-
varying conditions of network and end system arise
that, if not adequately addressed, will render high
performance storage and network systems extremely
underperformed. In this paper, we propose a data
movement system that dynamically and adaptively
adjusts end systems and networks parallelisms in re-
sponse to changing conditions of end systems and
networks to sustain high-throughput for data trans-
fers. We evaluate our system in multiple settings and
show that (1) in a homogeneous configuration, the
design can achieve better throughput for light and
medium workload than GridFTP and achieve com-
parable throughput for heavy workload, (2) and in a

heterogeneous configuration, the design can achieve
several factors higher throughput for all workloads
than GridFTP.

1 Introduction

Scientific experiments (e.g., climate modeling and
prediction, biomedical imaging, geosciences, and
high-energy physics) [10] are expected to generate,
analyze, and distribute data volumes on the order
of petabytes. As data volumes increase, experiments
may have to use external computing facilities (e.g.,
supercomputing, data centers) to process the data,
which will necessitate high-performance file and stor-
age systems and additional fast wide area network
(WAN) transfers. The U.S. Department of Energy
(DOE) and Internet2 are building 100 Gbps networks
to address the bandwidth requirements of scientific
applications. These initiatives represent a major step
forward in wide area network performance and arrive
just in time for moving big data worldwide. The in-
troduction of high-throughput storage area network
(SAN) and parallel file systems (e.g. GPFS, PVFS,
Lustre) enables fast parallel reads/writes of big files.

However, sustaining end-to-end data transfer rates
close to network speeds is a challenging task. Mov-
ing data across the wire at 100 Gbps is not the
same as reliably transferring 45 terabytes in an hour
(or 1.08 petabytes/day) end-to-end, as simple math
might suggest should be easily attainable. Many ob-
stacles contribute to the degraded performance, span-

1

ning from the heterogeneity of end systems and net-
work configurations to dynamically changing condi-
tions of end systems and networks. We propose to
exploit the parallelism of end systems and adapt to
the load on storage systems and networks to achieve
high end-to-end throughput for data transfers.

Depending on the configuration of end hosts, stor-
age systems and networks, bottleneck for a given
data movement could vary. For example, an end-
point may be connected to a parallel file system that
can constantly provide 100MBps to 1GBps disk I/O
rates for single-file reads/writes but that endpoint
may have a 1Gbps bottleneck for wide area commu-
nication. Some endpoints may be connected by a
100Gbps wide area connection but the NICs at the
end hosts can drive only 10Gbps. In this case more
nodes are needed at each end to increase the end-
to-end transfer throughput and saturate the avail-
able network capacity. In some cases, one endpoint
may have a 10Gbps NIC and the other endpoint may
have only a 1Gbps NIC, even though the network in
between and the storage systems at both ends can
handle 10Gbps. Using multiple hosts at the end with
nodes having 1Gbps NIC will improve the end-to-end
throughput in such cases. Also, the load on the end
systems and networks will vary over time. The disk
read throughput at sender may no longer be able to
saturate the network or the disk write throughput
at the receiver may start to hold down the network.
The number of nodes at each end of the transfer and
the number of disk and network threads with a node
may have to be varied dynamically to optimize the
performance as well as resource usage.

In this paper, we present a system that exploits
the parallelism of end systems and networks, and dy-
namically adapts to changing conditions of both the
network and end systems in order to accelerate end-
to-end big data transfers.

The remaining of the paper is organized as follows.
We discuss related work in Section 2. We provide
some background in Section 3. We present our design
and implementation in Section 4. In Section 5, we
discuss our experiments and results. We conclude
this paper in Section 6.

2 Related Work

Efficient data movement is not a new problem. The
Distributed Parallel Storage System (DPSS) [9] pro-
vide high-speed random access to large data sets
through collection of distributed disk servers that
operate in parallel. Logistical networking [3] uses
storage depots in the network to accelerate data
distribution. Phoebus [12] and Kangaroo [11] that
make opportunistic use of disks in intermediate nodes
to improve end-to-end performance have been pro-
posed. Peer-to-peer systems such as BitTorrent [6]
enable clients to download pieces of file from multi-
ple sources while simultaneously uploading pieces to
others. Weigle and Chien [13] propose algorithms for
computing efficient communication schedules for M-
to-N communication problem. GridFTP [1] uses par-
allel TCP streams to workaround the limitations of
TCP in high-bandwidth high-latency environments.
The striping capability in GridFTP enables M-to-N
communication but it has a limitation that M and
N must be statically configured. Managed GridFTP
[5] provides a framework to dynamically change the
number of data movers at each end but the server
does not have the ability to automatically increase or
decrease the number of data movers based on the
state of the system. Bhat et al. describe a self-
managing data streaming service that allows users
to specify self-managing behaviour. The service com-
bines rule-based approach and model-based approach
to enforce the behaviour. [4] presents a threaded
buffer management algorithm for real time streaming
of the simulation data but it uses a logitical network-
ing based approach for data transfer. Our system
continuously monitors the transfer environment and
adaptively changes the number of nodes involved in
the transfer, number of processes per node and num-
ber of disk and network I/O threads per processes to
achieve optimal performance. There has been a num-
ber of studies [2, 7, 8, 14] on automatically configur-
ing the number of parallel streams but these studies
focus on optimizing network performance for single
node transfers whereas our system considers multi-
node transfers and optimizing disk I/O as well.

2

3 Background

We present some basic methods to increase the end-
to-end throughput for big data transfer in this sec-
tion. We mainly use multiple threads, multiple TCP
streams, and multiple nodes to adjust the network
and end systems parallelism. Other factors (e.g.,
file read/write block sizes, send/receive buffer sizes,
transfer protocols, thread/process-core affinity, direct
memory access, and network interrupt coalescing) are
system-specific. We assume these are set for optimal
performance before the system is in operation. So,
these factors not the concerns of this paper.

Increasing the number of threads to read/write (in
blocking mode) a file in a production file system can
significantly improve the throughput (as shown in
Figure 1). This is attributable mainly to two fac-
tors: (1) a file is partitioned into blocks and striped
over multiple storage nodes and the blocks residing
in different storage nodes can be read/written in par-
allel and (2) the round-trip time from the issue of a
read/write request to the completion of the request
via SAN is longer than actual file block read/write
time, therefore issuing a read/write request after the
completion of previous request will not saturate the
file system. This trend on a single node continues
until the node becomes the bottleneck due to NIC
limitations or overwhelming context-switching over-
head. Using multiple nodes to read/write from the
file system resumes this trend until the file system
becomes the bottleneck.

Similarly, increasing the number of TCP streams
on a single node increases the network transfer
throughput (as shown in Figure 2). This trend levels
off when the node becomes a bottleneck due to over-
whelming context-switching overhead. Using multi-
ple nodes for network transfer continues this trend
until the wide area network becomes saturated.

4 Design

4.1 Assumption

In designing the high-throughput data transfer sys-
tem, we have been guided by assumptions that offer

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

of I/O threads (round-robin over nodes)

1 node

2 nodes

3 nodes

4 nodes

Figure 1: Disk read throughput of a 32GB file on GPFS
using nodes with 10Gbps NIC.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

of streams (round-robin over nodes)

1 node

2 nodes

Figure 2: Memory-to-memory transfer of 32GB between
ALCF and NERSC using nodes with 10Gbps NIC.

both challenges and opportunities. We lay out our
assumptions in detail:

• The nodes that are responsible for data trans-
fers are heterogeneous and may be dynamically
added or removed. Some nodes may have faster
memory access and/or network interfaces. Ex-
ploiting all the available resources is critical to
increase throughput.

• The workload consists of big file transfers over

3

wide and local areas. Connection setup times
are negligible comparing to transfer durations.

• Files are stored in high-performance parallel file
systems, where files are heavily striped over
many disks. One write/read thread may not be
able to saturate the file system.

• Wide area networks have large latency-
bandwidth product and may be lossy, where one
TCP connection may not be able to achieve the
highest throughput.

• The bottleneck of the end-to-end transfer may lie
in the file systems, end hosts, or the network for
a given transfer. The bottleneck might change
during the data transfer.

• End users may not have the expertise to un-
derstand the system and thus the system must
be able to tune the performance automatically
without any input from the user.

4.2 Architecture

Our system consists of a single mover master, numer-
ous movers, multiple transfer front-ends, and transfer
clients, as shown in Figure 3. A mover is a user-level
process that may consists of multiple I/O threads
and network transfer threads. A node may provide
multiple movers based on its computation, I/O, and
network capacity. Movers are divided into clusters.
Movers of the same cluster have the same access right
to a specific file system and usually physically coupled
with or close to the file system storage devices. Each
mover is listening on a freely chosen port for potential
incoming connections. TCP connections are estab-
lished between movers (which is called pairing) and
actual data is transferred only between movers. Each
file is divided into fixed-size chunks. Each chunk is
identified with a pair (file offset, chunk size). Transfer
managers assign chunks to movers for transfer. When
a mover is assigned to a specific transfer request, it
will transfer the file data of the request until the file
transfer completes. When a mover completes or is
going to complete its chunk, it asks for more chunks.
When no more chunks are available, the source mover

disconnects with its peer destination mover (which is
called dis-pairing) and then both of them are ready
to serve other transfer requests.

The mover master maintains all mover metadata
using a mover pool. Each dis-paired mover (after
transfer completion) registers itself to the mover mas-
ter, including address (IP address and listening port),
cluster identification, and configurations (e.g., the
number of I/O threads and allowed number of net-
work connections). Having a single master vastly
simplifies our design and enables the master to make
sophisticated mover pairings using global knowledge.
However, we must minimize its involvement in man-
aging transfer processes so that it does not become a
bottleneck. We introduce transfer managers, which
are responsible for managing actual transfers. A
transfer manager accepts requests from clients, and
requests for idle movers from the mover master, pairs
movers, and assigns file chunks to movers.

Lets look at the flow of interactions for a simple file
transfer with reference to Figure 3. First, a transfer
request (with source and destination cluster identifi-
cation and file paths) is issued by the client. The re-
quest is assigned to a transfer manager, which is usu-
ally the transfer manager closest to the source cluster
for smaller communication latency between transfer
manager and source movers. The transfer manager
requests for idle movers from the mover master at
both the source and destination clusters. When a
pair of movers are returned from the mover master,
the transfer manager instructs the destination mover
to establish connection to the source mover. Upon
the connection establishment, the source mover asks
for chunks of the file to transfer. The transfer man-
ager allocates chunks to requesting movers till the end
of the file. When there are no more chunks available,
the allocated movers are dis-paired and returned to
the mover pool at the mover master, which then can
serve other transfer requests.

4.3 On Demand Chuck Allocation

Since movers may have different capacity and end-
system and network conditions may change unpre-
dictably, movers request for chunks on-demand. By
default, each chunk is 1G bytes and the size of a block

4

Mover Master

Client

Application

Mover Pool

Chunk Map

Transfer
Manager

Chunk Map

Mover

Mover

... Legend:

Data Packets

Control Msgs

Transfer
Request

Transfer
Reply

Mover
Request

Mover
Reply

Chunk
Reply

Chunk
RequestTransfer

Manager

Figure 3: Architecture of our data movement system.

read is 4M bytes. The I/O threads of a mover syn-
chronize locally (with the same node) to read blocks
within the allocated chunks, which avoids frequent
communication between the mover and the transfer
manager and therefore avoids the transfer manager
from becoming a bottleneck. Each mover starts to
request for more chunk only when the number of
bytes remaining in the currently allocated chunk is
less than a given threshold. The threshold should be
set as the maximum bytes that the mover can read
in the largest round-trip time of a chunk request and
reply. By default, the threshold is 256 MB. Once
a transfer manager receives a chunk request from a
mover, the next unassigned chunk is allocated to this
mover.

4.4 Automatic Performance Tuning

Movers periodically report its performance informa-
tion to transfer managers. Since a transfer is man-
aged by only one transfer manager, the transfer man-
ager can collect the performance data of all movers
involved in the transfer. Using the global knowledge

Rise-up region

Number of Movers

Level-off region

Figure 4: Automatic Performance Tuning.

and the historic performance data of the transfers,
the transfer manager can be aware of potential oppor-
tunity to improve throughput in time. The transfer
manager plots a graph, as shown in Figure 4, based on
the history data. The graph is divided into two por-
tions: the rise-up and level-off portions. The graph
is dynamically updated according to the newest per-
formance report, reflecting the changing conditions
of network and end system in time. When a transfer
lies in the rise-up portion, the transfer manager on

5

behalf of the transfer can request more movers from
the mover master, otherwise, a pair of movers should
be released and return to the mover pool.

5 Experiments

We perform experiments in two typical settings: a
local area network (LAN) and a wide area network
(WAN). Nodes for LAN and WAN transfers are set
up both homogeneously and heterogeneously. Each
node in the LAN has a 1 Gbps and 10 Gbps Myrinet
interface. Data is transferred in WAN from Argonne
in Illinois and NERSC in California. Hosts are either
2.1 GHz 8 core SMP processors with at least 8 GB
memory and 2 GB swap space. In all tests, we set
the TCP buffer size, file block read/write size to the
optimal values specific to each host. We used files
and memory content of size 32 GB. We use multiple
nodes for both source and destination. We compare
the performance of our system with manually tuned
GridFTP.

5.1 LAN Performance

We vary the number of nodes in the sender and re-
ceiver clusters for the LAN transfers, and vary the
number of movers at each node as well to utilize the
available resources effectively. Each mover has one
I/O thread and one network thread for each TCP
connection over a 10 Gbps interface. We bench-
marked the maximum disk read/write performance
and network bandwidth and the results are shown
in Table 1. Note that the maximum bandwidth
achievable by a single file read/write is slightly lower
than the aggregated bandwidth achievable by simul-
taneous multiple file reads/writes since a single file
read/write usually can not saturate a production par-
allel file system.

Figure 5 shows that as the number of nodes (where
10 Gbps interface is used for each node) per clus-
ter or the number of movers per node increases, the
throughput of the single file transfer increases rapidly
mainly due to the fact that a single mover can not
saturate either the high-performance file system or
the high-speed network. As the number of movers

Table 1: Maximum disk read/write of a single file
and network bandwidth over a LAN

Operations # of nodes Max BW (MBps)

Read

1 708

2 1286

4 1912

8 1888

16 1868

Write

1 520

2 790

4 890

8 950

16 980

Net

1 1220

2 2050

4 4024

8 7980

16 15200

increases per node beyond the number of processor
per node, the aggregate bandwidth per node starts
to level off since it reaches the maximum read/write
bandwidth achievable by a single node. Moreover,
the achievable maximum bandwidth by a single node
is less than the maximum bandwidth by multiple
nodes mainly due to the context-switching overhead
among multiple movers at a single node.

We also set up the GridFTP servers that stripe
over the 4 nodes at both the sender and receiver
side. Among them, 2 nodes use 1 Gbps interface
and 2 nodes use 10 Gbps interface for data trans-
fers. We report the maximum bandwidth achieved
by GridFTP with such a configuration and compare
it with our system with the same nodes at both the
sender and receiver side, as shown in Figure 6. We
observed that the throughput of GridFTP is almost
constant. The reason lies in the static striping mode
of GridFTP, which statically and equally distributes
file chunks/blocks to each node, no matter how dif-
ferent the capacities of these nodes are. As a result,
the throughput of the entire transfer is same as the
throughput obtained from the least-capable node. In
the aforementioned heterogeneous configuration, the

6

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

Nodes per send/recv cluster

1 mover per node

2 movers per node

4 movers per node

8 movers per node

16 movers per node

Figure 5: Disk-to-disk throughput with varying paral-
lelisms for single file transfer over LAN.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

of simultaneous transfers

GridFTP with striping

Concerted-flow with 16 movers per node

Figure 6: Disk-to-Disk throughput for multiple file trans-
fers over LAN.

two nodes with 1 Gbps become a bottleneck for mul-
tiple file transfers while the other two nodes with 10
Gbps is not fully utilized. All transfers need to trans-
fer half of their file chunks over these two slow nodes.
In contrast, the movers in our system dynamically
ask for more chunks upon the completion of previous
chunks. Movers on the two nodes with 10 Gbps in-
terface transfer proportionally much more data than
the other two nodes with 1 Gbps interface. Therefore,
the system maintains a high overall throughput.

Table 2: Maximum disk read/write of a single file
and network bandwidth over the homogeneous WAN

Operations # of nodes Max BW (MBps)

net 1 690

net 2 1200

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
o

n
d

)

Movers per node

1 node per cluster

2 nodes per cluster

Figure 7: Disk-to-disk throughput with varying paral-
lelisms for single file transfer over a homogeneous WAN.

5.2 WAN Performance

5.2.1 Homogeneous Configuration

We transfer files from two DTNs at ALCF to two
DTNs at NERSC. Each node has a 10 Gbps interface.
We benchmark the maximum network bandwidth as
in Table 1, the disk read/write performance is simi-
lar to Table 1 since these nodes share the same file
system.

We vary the number of movers at each node and
the throughput, as observed by the end-user, for a
single file transfer increases dramatically, as shown
in Figure 8. The figure shows that a single node
can transfer up to 660 MBps with multiple movers.
The bandwidth can boost up to 1200 MBps with two
nodes.

We then compare the performance of GridFTP and
our system in the aforementioned homogeneous con-
figuration over a WAN from ALCF to NERSC. We

7

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

of simultaneous transfers

GridFTP with striping

Concerted-flow with 16 movers per node

Figure 8: Disk-to-disk throughput for multiple file trans-
fers over the homogeneous WAN.

transfer files between NERSC and ALCF using two
nodes at each side. Each node is connected to the
network with a 10 Gbps interface. We observed that
the achieved throughput of our system in our ex-
periments is several factors greater than finest-tuned
GridFTP for light and medium workload since that
GridFTP does not use all available resources to max-
imize the throughput. However, when the workload
is heavy, the achieved throughput of our system is
slightly lower than the finest-tuned GridFTP. We are
investigating the reason for this and ways to improve
the performance of our system under heavy workload.

5.2.2 Heterogeneous Configuration

We also compare the performance of GridFTP and
our system in a heterogeneous configuration over
WAN. Both source and destination cluster consist
of 4 nodes, two nodes with 1 Gbps interfaces and
the other two with 10 Gbps interfaces. Each node
have 16 movers for our system. Transfers are striped
over the 4 nodes for GridFTP. We vary the number
of simultaneous transfers (a transfer batch) the clus-
ter undertaking and report the aggregate bandwidth,
which is calculated as the ratio of the aggregate trans-
fer file sizes to the batch completion time.

Like Figure 6, Figure 9 shows that our system
has much higher aggregate bandwidth due to the on-

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c
o

n
d

)

of simultaneous transfers

GridFTP with striping

Concerted-flow with 16 movers per node

Figure 9: Disk-to-Disk throughput for multiple file trans-
fers over heterogeneous WAN.

demand chuck allocation.

6 Conclusion

High-bandwidth, high-latency long-haul optical net-
works are becoming increasingly available to re-
searchers and scientists. But high end-to-end per-
formance is often elusive for various reasons. When
considering sustained end-to-end performance, rather
than instantaneous network performance, numerous
additional issues arise. The file systems at the end-
points may require considerable parallelism in order
to store/retrieve data rapidly. Network conditions
and load on the end systems may vary dynamically.
Bottlenecks may exist at any component along the
end-to-end path. Most instantaneous or lasting end-
to-end transfer bottlenecks can be overcome by in-
creasing the level of hardware or software parallelism
at these bottleneck. Therefore, exploiting parallelism
of end systems and networks dynamically and opti-
mally can accelerate end-to-end transfers. We de-
signed a prototype that exploits available parallelisms
dynamically and adaptively. The design overcomes
some limitation of the GridFTP design. The prelim-
inary results show that (1) in a homogeneous con-
figuration, the design can achieve better throughput
for light and medium workload than GridFTP and

8

achieve approximately same throughput for heavy
workload, (2) and in a heterogeneous configuration,
the design can achieve several factor higher through-
put for all workloads than GridFTP.

References

[1] W. Allcock, J. Bresnahan, R. Kettimuthu,
M. Link, C. Dumitrescu, I. Raicu, and I. Fos-
ter. The globus striped gridftp framework and
server. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, pages 54–
, Washington, DC, USA, 2005. IEEE Computer
Society.

[2] M. Balman and T. Kosar. Dynamic adaptation
of parallelism level in data transfer scheduling.
In CISIS, pages 872–877, 2009.

[3] M. Beck, T. Moore, and J. S. Plank. An
end-to-end approach to globally scalable net-
work storage. In Proceedings of the 2002 con-
ference on Applications, technologies, architec-
tures, and protocols for computer communica-
tions, SIGCOMM ’02, pages 339–346, New York,
NY, USA, 2002. ACM.

[4] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. Mc-
Cune, and M. Parashar. High performance
threaded data streaming for large scale simu-
lations. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing,
GRID ’04, pages 243–250, Washington, DC,
USA, 2004. IEEE Computer Society.

[5] J. Bresnahan, M. Link, R. Kettimuthu, and
I. Foster. Managed gridftp. In Proceedings of the
2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and PhD
Forum, IPDPSW ’11, pages 907–913, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[6] B. Cohen. Incentives Build Robustness in Bit-
Torrent. In In Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[7] T. Ito, H. Ohsaki, and M. Imase. Automatic pa-
rameter configuration mechanism for data trans-
fer protocol gridftp. In Proceedings of the Inter-
national Symposium on Applications on Inter-
net, SAINT ’06, pages 32–38, Washington, DC,
USA, 2006. IEEE Computer Society.

[8] T. Ito, H. Ohsaki, and M. Imase. Gridftp-
apt: Automatic parallelism tuning mechanism
for data transfer protocol gridftp. In Proceedings
of the Sixth IEEE International Symposium on
Cluster Computing and the Grid, CCGRID ’06,
pages 454–461, Washington, DC, USA, 2006.
IEEE Computer Society.

[9] W. E. Johnston, W. Greiman, G. Hoo, J. Lee,
B. Tierney, C. Tull, and D. Olson. High-
speed distributed data handling for on-line in-
strumentation systems. In Proceedings of the
1997 ACM/IEEE conference on Supercomput-
ing (CDROM), Supercomputing ’97, pages 1–19,
New York, NY, USA, 1997. ACM.

[10] R. Kettimuthu, A. Sim, D. Gunter, B. All-
cock, P.-T. Bremer, J. Bresnahan, A. Cherry,
L. Childers, E. Dart, I. Foster, K. Harms,
J. Hick, J. Lee, M. Link, J. Long, K. Miller,
V. Natarajan, V. Pascucci, K. Raffenetti,
D. Ressman, D. Williams, L. Wilson, and
L. Winkler. Lessons learned from moving earth
system grid data sets over a 20 gbps wide-area
network. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Dis-
tributed Computing, HPDC ’10, pages 316–319,
New York, NY, USA, 2010. ACM.

[11] S.-C. Son. The kangaroo approach to data move-
ment on the grid. In Proceedings of the 10th
IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC ’01, pages
325–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[12] M. Swany. Improving throughput for grid appli-
cations with network logistics. In Proceedings
of the 2004 ACM/IEEE conference on Super-
computing, SC ’04, pages 23–, Washington, DC,
USA, 2004. IEEE Computer Society.

9

[13] E. Weigle and A. A. Chien. The composite end-
point protocol (cep): scalable endpoints for ter-
abit flows. In Proceedings of the Fifth IEEE
International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 2 - Volume
02, CCGRID ’05, pages 1126–1134, Washington,
DC, USA, 2005. IEEE Computer Society.

[14] E. Yildirim, M. Balman, and T. Kosar. Dynam-
ically tuning level of parallelism in wide area
data transfers. In Proceedings of the 2008 in-
ternational workshop on Data-aware distributed
computing, DADC ’08, pages 39–48, New York,
NY, USA, 2008. ACM.

10

